The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ultrastructure of calcitonin gene-related peptide-immunoreactive, unmyelinated afferents to the cat carotid body: a case of volume transmission.

To relate the ultrastructure of unmyelinated afferents to the cat carotid body with the known electrophysiological properties of cat chemosensory C-fibers, we took advantage of the fact that the calcitonin gene-related peptide is exclusively present in a population of sparsely branched afferents to the carotid body. They have a morphology identical to the afferents originating from carotid sinus nerve unmyelinated axons. Immunoreactive axons were stained using pre-embedding protocols and horseradish peroxidase-labeled secondary antibody. Labeling was present only in unmyelinated axons and boutons distributed in the interstitial and parenchymal tissue. The varicosities had an average diameter of 0.7 micron, and contained both small, clear vesicles and larger dense-core vesicles. No labeled axons were ever seen to contact glomus cells, but could be observed as close as 0.2 micron to a glomus cell, always with an interposed glial process. With a very sensitive protocol, that used tungstate-stabilized tetramethylbenzidine as the chromogen, amorphous deposits of reaction product were often detected in the extracellular space around a labeled bouton. We interpret these findings as indicating that the reciprocal chemical transmission between the oxygen-sensitive glomus cells and the unmyelinated afferents takes place through non-synaptic transmission, via the rather large extracellular space of the carotid body. In addition, the larger distances between glomus cells and unmyelinated afferents could explain the lowered sensitivity and sluggishness of chemosensory C-fibers, compared to the A-fibers.[1]

References

 
WikiGenes - Universities