The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Proto-oncogenic properties of the DP family of proteins.

The cellular transcription factor DRTF1/ E2F is implicated in the control of cellular proliferation due to its interaction with key regulators of cell cycle progression, such as the retinoblastoma tumour suppressor gene product, cyclins and cyclin-dependent kinases. DRTF1/ E2F is a heterodimeric DNA binding activity which arises when a member of two distinct families of proteins, DP and E2F, interact as DP/ E2F heterodimers, for example, DP-1 and E2F-1. In DRTF1/ E2F the activity of DP-1 is under cell cycle control, possibly by phosphorylation, and in many types of cells it is a frequent, if not general DNA binding component of DRTF1/ E2F. The expression of other DP proteins, such as DP-2, is tissue-restricted. Here, we show that DP-1 and DP-2 are integrated with another growth regulating pathway which involves signal transduction emanating from activated Ras protein. Thus, activated Ha-ras can co-operate with DP-1 or DP-2 in the transformation of rat embryo fibroblasts, establishing for the first time that DP proteins are endowed with proto-oncogenic activity. Moreover, an analysis of a dominant-negative and mutant DP-1 proteins suggests that the primary target through which DP-1 mediates its oncogenic activity is unlikely to be due to the regulation of E2F site-transcription, suggesting an E2F-independent effector function for DP-1. These results therefore establish DP genes as proto-oncogenes and thus argue that deregulating the normal control of DP protein activity will be important in promoting aberrant cellular proliferation.[1]

References

  1. Proto-oncogenic properties of the DP family of proteins. Jooss, K., Lam, E.W., Bybee, A., Girling, R., Müller, R., La Thangue, N.B. Oncogene (1995) [Pubmed]
 
WikiGenes - Universities