The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Reduction of GABAA receptor binding of [3H]muscimol in the barrel field of mice after peripheral denervation: transient and long-lasting effects.

The effect of peripheral sensory deprivation upon GABAA receptor binding of [3H]muscimol was investigated in the barrel cortex--cortical representation of mystacial vibrissae of mice--by means of in vitro quantitative autoradiography. Unilateral lesions of all vibrissae or selected rows of whiskers were performed neonatally or in adulthood. [3H]muscimol binding was examined after various survival times up to 60 days. Both types of lesions performed in adult mice resulted in a transient decrease (10-25%) of binding values in the deafferented areas of the barrel field as compared with the unoperated control side. Sixty days after denervation [3H]muscimol binding returned to control values. Similar results were found after neonatal removal of all vibrissae. Neonatal lesion of selected rows of vibrissae, however, resulted in a decrease of [3H]muscimol binding (by about 26%) lasting up to 60 days in corresponding rows of barrels. This last result was accompanied by severe cytoarchitectonic malformation of the barrel field. The results support the hypothesis that a decrease of inhibition plays a facilitatory role in the plastic reorganization of cortical circuitry.[1]

References

  1. Reduction of GABAA receptor binding of [3H]muscimol in the barrel field of mice after peripheral denervation: transient and long-lasting effects. Skangiel-Kramska, J., Głazewski, S., Jabłońska, B., Siucińska, E., Kossut, M. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1994) [Pubmed]
 
WikiGenes - Universities