The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification of osteocalcin mRNA in nonosteoid tissue of rats and humans by reverse transcription-polymerase chain reaction.

Diseased or necrotic tissue can become calcified in a way that resembles bone. We examined soft tissues for the presence and regulation of the mRNA for the bone-associated protein, osteocalcin (OC). RNA was isolated from liver, kidney, lung, brain, muscle, and bone of young (2 months) male SD rats and analyzed for beta-actin, IGF-I, metallothionein IIa, alpha 1 collagen, calbindin-D9k ( CaBP), and OC mRNA by reverse transcription-polymerase chain reaction (RT-PCR). All PCR products but CaBP were found in bone; CaBP was present only in duodenum, kidney, and lung. OC product was detected in all tissues; the identity of the PCR product was confirmed by sequencing. Bone OC mRNA levels were calculated to be 1000-fold higher than duodenal levels. Rats fed a 0.8% strontium diet for 7 days to drive down serum 1,25-dihydroxyvitamin D3 levels [1,25(OH)2D3] and then injected with 300 ng 1,25(OH)2D3/100 body weight had increased duodenal CaBP (2.5-fold) and femur OC mRNA (2.2-fold) 24 h after treatment. Duodenal OC mRNA was unchanged. OC mRNA was found in nondiseased human aortae, and the amount of message was elevated in calcified aorta and calcified aortic plaques. These results demonstrate that (1) tissues other than bone have low basal expression of OC mRNA, (2) OC mRNA is not regulated by vitamin D in nonosteoid tissue, and (3) expression of OC mRNA in atherosclerotic aorta reflects a role for bone-forming cells in ectopic bone formation observed in certain disease conditions.[1]

References

 
WikiGenes - Universities