The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Copper/topa quinone-containing histamine oxidase from Arthrobacter globiformis. Molecular cloning and sequencing, overproduction of precursor enzyme, and generation of topa quinone cofactor.

The gene coding for histamine oxidase has been cloned and sequenced from a Coryneform bacterium Arthrobacter globiformis. The deduced amino acid sequence consists of 684 residues with a calculated molecular mass of 75,109 daltons and shows a high overall identity (58%) with that of phenethylamine oxidase derived from the same bacterial strain. Although the sequence similarities are rather low when compared with copper amine oxidases from other organisms, the consensus Asn-Tyr-Asp/Glu sequence, in which the middle Tyr is the precursor to the quinone cofactor (the quinone of 2,4,5-trihydroxyphenylalanine, topa) covalently bound to this class of enzymes, is also conserved in the histamine oxidase sequence. To identify the quinone cofactor, an overexpression plasmid has been constructed for the recombinant histamine oxidase. The inactive enzyme purified from the transformed Escherichia coli cells grown in a copper-depleted medium gained maximal activity upon stoichiometric binding of cupric ions. Concomitantly with the enzyme activation by copper, a brownish pink compound was generated in the enzyme, which was identified as the quinone of topa by absorption and resonance Raman spectroscopies of the p-nitrophenylhydrazine-derivatized enzyme and found at the position corresponding to the precursor Tyr (Tyr-402). Therefore, the copper-dependent autoxidation of a specific tyrosyl residue operates on the formation of the topa quinone cofactor in this enzyme, as recently demonstrated with the precursor form of phenethylamine oxidase (Matsuzaki, R., Fukui, T., Sato, H., Ozaki, Y., and Tanizawa, K. (1994) FEBS Lett. 351, 360-364).[1]

References

 
WikiGenes - Universities