The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Glutamate receptors on type I vestibular hair cells of guinea-pig.

Afferent nerve calyces which surround type I vestibular hair cells (VHCI) have recently been shown to contain synaptic-like vesicles and to be immunoreactive to glutamate antibodies. In order to understand the physiological significance of these observations, the presence of glutamate receptors on type I vestibular sensory cells has been investigated. The effect of excitatory amino acids applied by iontophoresis was examined by spectrofluorimetry using fura-2 sensitive dye. Glutamate application caused a rapid and transient increase in intracellular calcium concentration ([Ca2+]i), in a dose-dependent manner. The ionotropic glutamate receptors agonists N-methyl-D-aspartic acid (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and quisqualic acid (QA) induced an increase of [Ca2+]i. The NMDA receptor antagonist 2-amino-5-phosphonovaleric acid and the AMPA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione partially blocked the glutamate response, by 39 +/- 10 and 53 +/- 11% respectively. Metabotropic receptors were also revealed by the specific agonist trans-1-amino-cyclopentyl-1,3-dicarboxylate. The presence of different glutamate receptors on the VHCI membrane suggests two kinds of feedback. (i) At the base of the sensory cell, autoreceptors may locally control the synaptic transmission. (ii) At the apex, postsynaptic receptors may modulate sensory transduction from glutamate release at the upper part of the afferent nerve calyx. These feedbacks suggest presynaptic modulation of the vestibular hair cell response which could affect its sensitivity.[1]

References

  1. Glutamate receptors on type I vestibular hair cells of guinea-pig. Devau, G., Lehouelleur, J., Sans, A. Eur. J. Neurosci. (1993) [Pubmed]
 
WikiGenes - Universities