The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

An E-box/M-CAT hybrid motif and cognate binding protein(s) regulate the basal muscle-specific and cAMP-inducible expression of the rat cardiac alpha-myosin heavy chain gene.

Expression of the cardiac myosin heavy chain (MHC) genes is regulated developmentally and by numerous epigenetic factors. Here we report the identification of a cis-regulatory element and cognate nuclear binding protein(s) responsible for cAMP-induced expression of the rat cardiac alpha-MHC gene. By Northern blot analysis, we found that, in primary cultures of fetal rat heart myocytes, the elevation of intracellular levels of cAMP results in up-regulation of alpha-MHC and down-regulation of beta-MHC mRNA expression. This effect of cAMP was dependent upon the basal level of expression of both MHC transcripts and was sensitive to cycloheximide. In transient expression analysis employing a series of alpha-MHC/CAT constructs, we identified a 31-base pair fragment located in the immediate upstream region (-71 to -40), which confers both muscle-specific and cAMP-inducible expression of the gene. Within this 31-base pair fragment there are two regions, an AT-rich portion and a hybrid motif which contains overlapping sequences of E-box and M-CAT binding sites (GGCACGTGGAATG). By substitution mutation analysis, both elements were found important for the basal muscle-specific expression; however, the cAMP-inducible expression of the gene is conferred only by the E-box/M-CAT hybrid motif (EM element). Using mobility gel shift competition assay, immunoblotting, and UV-cross-linking analyses, we found that a protein binding to the EM element is indistinguishable from the transcription enhancer factor-1 ( TEF-1) in terms of sequence recognition, molecular mass, and immunoreactivity. Methylation interference and point mutation analyses indicate that, besides M-CAT sequences, center CG dinucleotides of the E-box motif CACGTG are essential for protein binding to the EM element and for its functional activity. Furthermore, our data also show that, in addition to TEF-1, another HF-1a-related factor may be recognized by the alpha-MHC gene EM element. These results are first to demonstrate transcriptional activation of a sarcomeric gene by cAMP and support the role of TEF-1 and HF-1a-like factors in the regulation of alpha-MHC gene expression in cardiac myocytes.[1]

References

 
WikiGenes - Universities