The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Modification of GTP-activated calcium translocation by fatty acyl-CoA esters. Evidence for a GTP-induced prefusion event.

A sensitive and specific GTP-activated Ca2+ translocation process induces rapid Ca2+ movements within cells and appears to reflect G protein-induced membrane fusion or junctional communication between discrete subpopulations of Ca(2+)-pumping organelles (Ghosh, T. K., Mullaney, J. M., Tarazi, F. I., and Gill, D. L. (1989) Nature 340, 236-239). Since fatty acylation can modify G protein action, modification of GTP-induced Ca2+ translocation by fatty acyl-CoA was investigated to throw light on the mechanism underlying Ca2+ transfer. Using permeabilized DDT1MF-2 smooth muscle cells, 2 microM palmitoyl-CoA completely blocked Ca2+ release activated by 20 microM GTP, while having no effect on inositol 1,4,5-trisphosphate-induced Ca2+ release. The IC50 (50% inhibitory concentration) for palmitoyl-CoA was 0.5 microM. Above 3 microM, palmitoyl-CoA inhibited Ca2+ accumulation. Fatty acyl chain length was important, C-13 to C-16 fatty acyl-CoA esters all fully blocking the action of GTP; the IC50 for myristoyl-CoA was also 0.5 microM. C-18 or larger acyl groups had diminished effectiveness as did C-8 or smaller acyl groups. Acetyl-CoA had no blocking effect. In contrast, 10 microM CoA itself blocked GTP-induced Ca2+ release. CoA required a free sulfhydryl group to block, desulfo-CoA having no effect. Removal of ATP by hexokinase and glucose prevented the action of CoA but not palmitoyl-CoA. The free sulfhydryl and ATP requirements indicated CoA was being acylated by endogenous fatty-acyl-CoA synthetase to be effective. The nonhydrolyzable myristoyl-CoA analog, S-(2-oxopentadecyl)-CoA, blocked the GTP effect identically to myristoyl- and palmitoyl-CoA (IC50 = 0.5 microM); thus, fatty acyl transfer is not required, indicating that blockade is due to a direct allosteric modification of a component of the GTP-activated process by acyl-CoA esters. Palmitoyl-CoA not only inhibited but completely reversed GTP-activated Ca2+ release, resulting in the released Ca2+ being taken back up into pools. In the presence of oxalate, GTP-activated Ca2+ transfer results in a substantial increase in Ca2+ accumulation; palmitoyl-CoA also completely reversed this effect resulting in rapid termination of Ca2+ uptake. This reversal provides strong evidence that GTP-activated Ca2+ translocation does not reflect a membrane fusion event. Instead, it likely represents formation of a reversible junction or pore between organelles which may be a required prefusion event.[1]

References

 
WikiGenes - Universities