The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Preclinical antitumor activity of temozolomide in mice: efficacy against human brain tumor xenografts and synergism with 1,3-bis(2-chloroethyl)-1-nitrosourea.

Temozolomide, a methylating agent with clinical activity against brain tumors, demonstrated excellent antitumor activity following p.o. administration to athymic mice bearing human brain tumor xenografts. In the early stage s.c. implanted SNB-75 astrocytoma model, a 400-mg/kg dose administered on Day 5 produced 10 of 10 Day 54 tumor-free mice. In later staged s.c. U251 and SF-295 glioblastoma models, a single 600-mg/kg dose produced 9 of 10 Day 86 and 2 of 10 Day 40 tumor-free mice, respectively. In the latter group, a tumor growth delay of > 315% was attained. Similar levels of activity were attained with equal total doses on schedules of daily for 5 doses and every fourth day for 3 doses. A single 40-mg/kg i.v. dose of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) also demonstrated excellent activity, producing 9 of 10 tumor-free mice in the SNB-75 model and growth delays of 283 and 301% in the U251 and SF-295 models, respectively. Temozolomide was also highly effective against intracerebral implants of the U251 and SF-295 glioblastomas. Administration of either 600 mg/kg on Day 1 or 200 mg/kg on Days 1, 5, and 9 produced 7 of 9 Day 90 tumor-free mice in the U251 model. In the SF-295 model, a single 400-mg/kg dose or three 200-mg/kg doses produced 3 and 4 of 10 Day 90 tumor-free mice, respectively, and prolonged survival by 127%. A single 40-mg/kg i.v. dose of BCNU was more effective than temozolomide in the intracerebral SF-295 model, and less effective in the intracerebral U251 model. The synergistic potential of temozolomide and BCNU in combination was evaluated in an advanced stage s.c. implanted SF-295 model. When temozolomide was administered 2 h after BCNU on a single treatment day, a dramatic synergistic therapeutic effect was observed in two experiments. For example, single agent doses of temozolomide (600 mg/kg) and BCNU (60 mg/kg) and a combination (400 mg/kg + 27 mg/kg) demonstrating equivalent toxicity produced growth delays of 190, 258, and > 492% (includes 5 of 10 Day 51 tumor-free mice), respectively. Analysis of the data by a quadratic dose response model indicated synergism with significance at P = 0.0001 in both experiments. Synergism also was demonstrated by the isobole method. The reverse sequence was more toxic, but at lower combination doses a synergistic effect was still observed (P = 0.0001).(ABSTRACT TRUNCATED AT 400 WORDS)[1]

References

  1. Preclinical antitumor activity of temozolomide in mice: efficacy against human brain tumor xenografts and synergism with 1,3-bis(2-chloroethyl)-1-nitrosourea. Plowman, J., Waud, W.R., Koutsoukos, A.D., Rubinstein, L.V., Moore, T.D., Grever, M.R. Cancer Res. (1994) [Pubmed]
 
WikiGenes - Universities