Mapping of glutamic acid decarboxylase (GAD) genes.
Glutamic acid decarboxylase (GAD) catalyzes the synthesis of gamma-aminobutyric acid (GABA), which is known as a major inhibitory neurotransmitter in the central nervous system (CNS), but is also present outside the CNS. Recent studies showed that GAD is the major target of autoantibodies associated with the development of insulin-dependent diabetes mellitus and of the rare stiff man syndrome. Studies of GAD expression have demonstrated multiple transcripts, suggesting several isoforms of GAD. In this study, three different genes were mapped by in situ hybridization to both human and mouse chromosomes. The GAD1 gene was mapped to human chromosome 2q31 and to mouse chromosome 2D in a known region of conservation between human and mouse. GAD2, previously mapped to human chromosome 10p11.2-p12, was mapped to mouse chromosome 2A2-B, which identifies a new region of conservation between human and mouse chromosomes. A potential GAD3 transcript was mapped to human chromosome 22q13 and to mouse chromosome 15E in a known region of conservation between human and mouse. It is concluded that the GAD genes may form a family with as many as three related members.[1]References
- Mapping of glutamic acid decarboxylase (GAD) genes. Edelhoff, S., Grubin, C.E., Karlsen, A.E., Alder, D.A., Foster, D., Disteche, C.M., Lernmark, A. Genomics (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg