The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Gastroduodenal mucosal protection.

The barrier that protects the undamaged gastroduodenal mucosa from autodigestion by gastric juice is a dynamic multicomponent system. The major elements of this barrier are the adherent mucus gel layer, which is percolated by the HCO3- secretion from the underlying epithelial cells; the epithelial layer itself, which provides a permeability barrier and can rapidly repair superficial damage by a process of cell migration referred to as reepithelization or restitution; and a specially adapted vasculature, which provides a supply of HCO3- for transcellular transport and/or diffusion into the mucus layer. Passive diffusion of intestinal HCO3- into the lumen is particularly important when there is superficial damage resulting in increased leakiness of the mucosal epithelium. The process of reepithelization occurs by the migration of performed cells from gastric pits or duodenal crypts. This process is quite distinct from the wound healing and associated inflammatory response that accompany more severe injury or chronic damage. The adherent mucus gel acts as a physical barrier against luminal pepsin and provides a stable unstirred layer that supports surface neutralization of acid by mucosal HCO3-. Surface neutralization by mucosal HCO3- provides a major mechanism of protection against acid in the proximal duodenum. In the stomach, where luminal acidity can fall to around pH 1, other mechanisms of protection must exist, since the surface pH gradient is reported to collapse when luminal H+ exceeds approximately 10 mM. This collapse of the surface pH gradients may reflect, at least in part, that such studies have been mostly performed on non-acid-secreting mucosa where the supply of HCO3- to the interstitium from the parietal cells will be reduced. However, because the gastric mucosa can withstand prolonged exposure to acid without apparent damage, this implies an intrinsic resistance of the epithelial apical surface. This is amply illustrated within the gastric glands that do not secrete mucus and HCO3- yet are exposed to undiluted pepsin and an isotonic solution of HCl. Bicarbonate and mucus secretions together with mucosal blood flow are under paracrine, endocrine, and neural control. The rate of reepithelialization will depend on local chemotactic factors, adhesion mechanisms, and the creation of an acid/pepsin/irritant-free environment under a protective gelatinous or mucoid cap. If optimal conditions are met, then the rate of reepithelialization appears to depend primarily on the intrinsic properties of the migrating cells themselves rather than control by exogenous mediators.(ABSTRACT TRUNCATED AT 400 WORDS)[1]

References

  1. Gastroduodenal mucosal protection. Allen, A., Flemström, G., Garner, A., Kivilaakso, E. Physiol. Rev. (1993) [Pubmed]
 
WikiGenes - Universities