The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Catalytic-site characteristics of the porcine calpain II 80 kDa/18 kDa heterodimer revealed by selective reaction of its essential thiol group with two-hydronic-state time-dependent inhibitors: evidence for a catalytic site Cys/His interactive system and an ionizing modulatory group.

1. Four calpain II heterodimers (80 kDa/30 kDa, 80 kDa/29 kDa, 80 kDa/26 kDa and 80 kDa/18 kDa) were isolated from fresh porcine kidney by (NH4)2SO4 precipitation, chromatography on DEAE-Sepharose CL-6B and subsequently on Reactive Red 120/agarose followed by f.p.l.c. on a Q-Sepharose Hi-Load 16/10 column. 2. The major component (80 kDa/30 kDa) was used to provide the catalytically active calpain II 80 kDa/18 kDa heterodimer by treatment with CaCl2; titration with trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E64) in the presence of monothioglycerol showed the preparation to have 1.0 +/- 0.05 catalytic sites per molecule of heterodimer. 3. The 80 kDa/30 kDa heterodimer was separated from monothioglycerol and other low-molecular-mass material by gel filtration on Sephadex G-25 without loss of catalytic activity towards sulphanilic acid/azocasein in the presence of added Ca2+. On storage overnight at a concentration of 3 microM in KCl at 4 degrees C in the absence of Ca2+ the activator-free preparation still produced fully active 80 kDa/18 kDa heterodimer on addition of Ca2+. 4. Activator-free 80 kDa/30 kDa heterodimer (in the absence of Ca2+) reacts relatively slowly with ethyl 2-pyridyl disulphide at pH 5.9; over 5000 s five thiol groups per molecule react, all at similar rates. In the presence of 8 mM CaCl2 under otherwise identical conditions (and also in the pH range 3.8-10.4) an initial faster phase of reaction corresponding to approx. one thiol group per molecule of heterodimer is generated, but it is not cleanly separated from the subsequent slower reactions on the stopped-flow trace. This fast phase of reaction does not occur when E64-inactivated calpain II is substituted for active 80 kDa/18 kDa heterodimer. 5. Greatly improved resolution of the fast phase of reaction involving the catalytic-site thiol group was achieved by using 2,2'-dipyridyl disulphide (2-Py-S-S-2-Py) instead of ethyl 2-pyridyl disulphide. 6. The pH-dependence of the second-order rate constant (k) for the reaction of the catalytically active activator-free 80 kDa/18 kDa calpain II heterodimer with 2-Py-S-S-2-Py was studied by stopped-flow spectral analysis in the pH range approx. 3-8 without interference from reactions of other thiol groups. 7. The form of the pH-k profile establishes for the first time the existence of an interactive catalytic site system [probably containing a (Cys)-S-/(His)-Im+H ion pair] analogous to those present in monomeric non-Ca(2+)-activated cysteine proteinases.(ABSTRACT TRUNCATED AT 400 WORDS)[1]

References

 
WikiGenes - Universities