The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium.

The human hormone-sensitive lipase ( HSL) gene encodes a 786-aa polypeptide (85.5 kDa). It is composed of nine exons spanning approximately 11 kb, with exons 2-5 clustered in a 1.1-kb region. The putative catalytic site (Ser423) and a possible lipid-binding region in the C-terminal part are encoded by exons 6 and 9, respectively. Exon 8 encodes the phosphorylation site (Ser551) that controls cAMP-mediated activity and a second site (Ser553) that is phosphorylated by 5'-AMP-activated protein kinase. Human HSL showed 83% identity with the rat enzyme and contained a 12-aa deletion immediately upstream of the phosphorylation sites with an unknown effect on the activity control. Besides the catalytic site motif (Gly-Xaa-Ser-Xaa-Gly) found in most lipases, HSL shows no homology with other known lipases or proteins, except for a recently reported unexpected homology between the region surrounding its catalytic site and that of the lipase 2 of Moraxella TA144, an antarctic psychrotrophic bacterium. The gene of lipase 2, which catalyses lipolysis below 4 degrees C, was absent in the genomic DNA of five other Moraxella strains living at 37 degrees C. The lipase 2-like sequence in HSL may reflect an evolutionarily conserved cold adaptability that might be of critical survival value when low-temperature-mobilized endogenous lipids are the primary energy source (e.g., in poikilotherms or hibernators). The finding that HSL at 10 degrees C retained 3- to 5-fold more of its 37 degrees C catalytic activity than lipoprotein lipase or carboxyl ester lipase is consistent with this hypothesis.[1]

References

 
WikiGenes - Universities