The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Differential activation of the Ras/extracellular-signal-regulated protein kinase pathway is responsible for the biological consequences induced by the Axl receptor tyrosine kinase.

To understand the mechanism of Axl signaling, we have initiated studies to delineate downstream components in interleukin-3-dependent 32D cells by using a chimeric receptor containing the recombinant epidermal growth factor (EGF) receptor extracellular and transmembrane domains and the Axl kinase domain (EAK [for EGF receptor-Axl kinase]). We have previously shown that upon exogenous EGF stimulation, 32D-EAK cells are capable of proliferation in the absence of interleukin-3. With this system, we determined that EAK-induced cell survival and mitogenesis are dependent upon the Ras/extracellular-signal-regulated protein kinase ( ERK) cascade. Although the phosphatidylinositol-3 kinase pathway is activated upon EAK signaling, it appears to be dispensable for the biological actions of the Axl kinase. Furthermore, we demonstrated that different threshold levels of Ras/ ERK activation are needed to induce a block to apoptosis or proliferation in 32D cells. Recently, we have identified an Axl ligand, GAS6. Surprisingly, GAS6- stimulated 32D-Axl cells exhibited no blockage to apoptosis or mitogenic response which is correlated with the absence of Ras/ ERK activation. Taken together, these data suggest that different extracellular domains dramatically alter the intracellular response of the Axl kinase. Furthermore, our data suggest that the GAS6-Axl interaction does not induce mitogenesis and that its exact role remains to be determined.[1]

References

  1. Differential activation of the Ras/extracellular-signal-regulated protein kinase pathway is responsible for the biological consequences induced by the Axl receptor tyrosine kinase. Fridell, Y.W., Jin, Y., Quilliam, L.A., Burchert, A., McCloskey, P., Spizz, G., Varnum, B., Der, C., Liu, E.T. Mol. Cell. Biol. (1996) [Pubmed]
 
WikiGenes - Universities