The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer's amyloid precursor protein.

Fe65 is a protein mainly expressed in several districts of the mammalian nervous system. The search of protein sequence data banks revealed that Fe65 contains two phosphotyrosine interaction ( PID) or phosphotyrosine binding (PTB) domains, previously identified in the Shc adaptor molecule. The two putative PID/PTB domains of Fe65 were used to construct glutathione S-transferase-Fe65 fusion proteins. Co-precipitation experiments demonstrated that the Fe65 PID/PTB domains interacted with several proteins of apparent molecular mass 135, 115, 105, and 51 kDa. The region of Fe65 containing the PID/PTB domains was used as a bait to screen a human brain cDNA library in yeast by the two-hybrid system. Three different cDNA clones were isolated, two of which contain overlapping segments of the cDNA encoding the COOH terminus of the Alzheimer's beta-amyloid-precursor protein (APP), that represents the short intracellular domain of this membrane protein. The third clone contains a cDNA fragment coding for the COOH terminus of the human counterpart of a mouse beta-amyloid-like precursor protein. The alignment of the three APP encoding cDNA fragments found in the screening suggests that the region of APP involved in the binding is centered on the NPTY sequence, which is analogous to that present in the intracellular domains of the growth factor receptors interacting with the PID/PTB domain of Shc.[1]

References

 
WikiGenes - Universities