The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Regulation of sterol 27-hydroxylase and an alternative pathway of bile acid biosynthesis in primary cultures of rat hepatocytes.

In man, hepatic mitochondrial sterol 27-hydroxylase and microsomal cholesterol 7alpha-hydroxylase initiate distinct pathways of bile acid biosynthesis from cholesterol, the "acidic" and "neutral" pathways, respectively. A similar acidic pathway in the rat has been hypothesized, but its quantitative importance and ability to be regulated at the level of sterol 27-hydroxylase are uncertain. In this study, we explored the molecular regulation of sterol 27-hydroxylase and the acidic pathway of bile acid biosynthesis in primary cultures of adult rat hepatocytes. mRNA and protein turnover rates were approximately 10-fold slower for sterol 27-hydroxylase than for cholesterol 7alpha-hydroxylase. Sterol 27-hydroxylase mRNA was not spontaneously expressed in culture. The sole requirement for preserving sterol 27-hydroxylase mRNA at the level of freshly isolated hepatocytes (0 h) after 72 h was the addition of dexamethasone (0.1 microM; > 7-fold induction). Sterol 27-hydroxylase mRNA, mass and specific activity were not affected by thyroxine (1.0 microM), dibutyryl-cAMP (5O microM), nor squalestatin 1 (15O nM-1.0 microM), an inhibitor of cholesterol biosynthesis. Taurocholate (50 microM), however, repressed sterol 27-hydroxylase mRNA levels by 55%. Sterol 27-hydroxylase specific activity in isolated mitochondria was increased > 10-fold by the addition of 2-hydroxypropyl-beta-cyclodextrin. Under culture conditions designed to maximally repress cholesterol 7alpha-hydroxylase and bile acid synthesis from the neutral pathway but maintain sterol 27-hydroxylase mRNA and activity near 0 h levels, bile acid synthesis from [14C]cholesterol remained relatively high and consisted of beta-muricholate, the product of chenodeoxycholate in the rat. We conclude that rat liver harbors a quantitatively important alternative pathway of bile acid biosynthesis and that its initiating enzyme, sterol 27-hydroxylase, may be slowly regulated by glucocorticoids and bile acids.[1]

References

  1. Regulation of sterol 27-hydroxylase and an alternative pathway of bile acid biosynthesis in primary cultures of rat hepatocytes. Stravitz, R.T., Vlahcevic, Z.R., Russell, T.L., Heizer, M.L., Avadhani, N.G., Hylemon, P.B. J. Steroid Biochem. Mol. Biol. (1996) [Pubmed]
 
WikiGenes - Universities