The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Unusual affinity of cyanide for ferrous and ferric Scapharca inaequivalvis homodimeric hemoglobin. Equilibria and kinetics of the reaction.

The homodimeric hemoglobin from the mollusk Scapharca inaequivalvis (HbI) yields very stable ferrous and ferric cyanide adducts. The stability of the ferrous complex is particularly unusual such that it enabled determination of the spectroscopic properties of the complex and the characterization of the cyanide binding reaction to deoxygenated HbI at equilibrium and kinetically. The absorption spectrum of the ferrous cyanide complex is typical of a low-spin derivative; in the near-infrared region, it displays two bands at 695 and 840 nm attributable to charge transfer transitions. At pH 9.2, cyanide binds to deoxy HbI with no cooperativity and an apparent affinity constant of 17 M-1, which is about 10-fold higher than that for deoxy horse heart myoglobin. The rate of cyanide dissociation from both the ferrous and the ferric HbI adducts is slow relative to those of the other hemoproteins investigated to date and provides the major contribution to the unusual affinity for the ligand. The rate of cyanide binding to the ferric protein, in which the pentacoordinate derivative is the dominant species, is about 100-fold faster relative to that of the ferrous protein. In structural terms, the high affinity for cyanide of Scapharca hemoglobin has been ascribed to the decreased overall polarity of the heme pocket which is related to the localization of the heme groups at the subunit interface.[1]

References

 
WikiGenes - Universities