The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Examination of the mixed-alkali effect in (Li,Na) disilicate glasses by nuclear magnetic resonance and conductivity measurements.

Results from 29Si, 23Na and 7Li magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy, 7Li NMR relaxation and electrical conductivity in a series of [Li(1-x).Nax]2O.2SiO2 (disilicate) glasses are used to investigate the mixed-alkali effect. From the 29Si NMR spectra there is relatively little change of the network with alkali composition. 23Na and 7Li NMR linewidths and shifts change continuously as a function of composition, indicating that the alkali ions are intimately and uniformly mixed rather than separated into lithium and sodium-rich domains. The activation energy from electrical conductivity shows a distinct maximum at the central composition (x = 0.5), whereas the local activation energy for lithium motion determined from NMR shows only a smaller but monotonic increase as the lithium-content decreases.[1]

References

  1. Examination of the mixed-alkali effect in (Li,Na) disilicate glasses by nuclear magnetic resonance and conductivity measurements. Ali, F., Chadwick, A.V., Greaves, G.N., Jermy, M.C., Ngai, K.L., Smith, M.E. Solid state nuclear magnetic resonance. (1995) [Pubmed]
 
WikiGenes - Universities