The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A comparative study of histone deacetylases of plant, fungal and vertebrate cells.

The enzymatic equilibrium of reversible core histone acetylation is maintained by two enzyme activities, histone acetyltransferase and histone deacetylase (HD). These enzyme activities exist as multiple enzyme forms. The present report describes methods to extract different HD-forms from three organisms, germinating maize embryos, the myxomycete Physarum polycephalum, and chicken red blood cells; it provides data on the chromatographic separation and partial purification of HD-forms. In germinating maize embryos three HDs (HD1-A, HD1-B, HD2) can be discriminated; HD1-A, HD1-B, and HD2 were characterized in terms of their dependence on pH, temperature and various ions, as well as kinetic parameters (Km for core histones) and inhibition by various compounds. The same parameters were investigated for the corresponding enzymes of Physarum polycephalum, and mature and immature chicken erythrocytes. Based on these results, optimum assay conditions were established for the different enzyme forms. The kinetic data revealed that the maize histone deacetylase HD1-B peak after partial purification by Q-Sepharose chromatography was heterogeneous and consisted of two histone binding sites that differed significantly in their affinity for purified core histones. Optimized affinity chromatography on poly-Lysine Agarose indeed showed that the former defined deacetylase HD1-B can be separated clearly into two individual HD enzyme forms. The high multiplicity of histone deacetylases underlines the importance of these enzymes for the complex regulation of core histone acetylation.[1]

References

  1. A comparative study of histone deacetylases of plant, fungal and vertebrate cells. Lechner, T., Lusser, A., Brosch, G., Eberharter, A., Goralik-Schramel, M., Loidl, P. Biochim. Biophys. Acta (1996) [Pubmed]
 
WikiGenes - Universities