Immunoreactivity of central vasopressin and oxytocin pathways in microtine rodents: a quantitative comparative study.
The genus Microtus includes several closely related species of voles with diverse patterns of social organization. Comparative studies of these species have previously tested hypotheses related to the evolution of monogamy and affiliation. In earlier studies, monogamous voles have been reported to differ from closely related nonmonogamous voles in the neural distribution of oxytocin and vasopressin receptors. These receptors have also been implicated in the behavioral differences relevant to monogamy, as oxytocin and vasopressin influence pair-bond formation in the monogamous species. In the current study, two monogamous and two nonmonogamous vole species were compared for the distribution of oxytocin and vasopressin immunoreactivity. Contrary to our predictions, gender dimorphisms in vasopressin immunoreactivity were as evident in the monogamous as in the nonmonogamous species. Also, species differences in oxytocin and vasopressin staining were subtle relative to the profound species differences previously reported for receptor binding. These results are consistent with the hypothesis that neuroendocrine systems may evolve by changes in receptor distribution rather than by restructuring the presynaptic pathway.[1]References
- Immunoreactivity of central vasopressin and oxytocin pathways in microtine rodents: a quantitative comparative study. Wang, Z., Zhou, L., Hulihan, T.J., Insel, T.R. J. Comp. Neurol. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg