The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Glutamate receptor-mediated calcium entry in neurons derived from P19 embryonal carcinoma cells.

We have examined the control of calcium elevation by glutamate in neurons derived from the mouse P19 embryonal carcinoma cell line. Following transient exposure to retinoic acid, P19 cells differentiate into neurons that express both NMDA and non-NMDA glutamate receptor subtypes. Fluorescence videomicroscopy using the indicator fura-2 revealed concentration-dependent elevation in cytosolic calcium levels with exposure to NMDA or kainate. Replacement of extracellular sodium with N-methylglucamine significantly reduced the action of kainate. Exposure to high K+ medium also elicited an elevation of cytosolic calcium in P19 cells, which was partially inhibited by the calcium channel antagonist nimodipine. These experiments suggest that the elevation in calcium produced by kainate involves the activation of voltage-gated calcium channels as a consequence of membrane depolarization, in contrast to direct calcium entry through NMDA receptor channels. Whole-cell recordings revealed that P19 NMDA receptors were highly permeable to calcium (PCa/PNa = 5.6 +/- 0.2). In most cells, channels gated by kainate displayed low permeability to calcium; the median permeability ratio, PCa/PNa, was 0.053 (range 0.045 to 0.132). Activation of peak currents by NMDA, glycine, and kainate was half-maximal at 24 microM, 240 nM, and 81 microM, respectively. In addition, cadmium-sensitive currents through voltage-gated calcium channels were recorded in P19 cells bathed in barium/TEA chloride. Staining with antibodies directed against AMPA receptor subunits revealed wide-spread immunoreactivity for anti-GluR-B/C and anti-GluR-B/D. About half of the P19 cells were stained with antibodies selective for GluR-D but there was little or no immunoreactivity for the GluR-A subunit.[1]

References

  1. Glutamate receptor-mediated calcium entry in neurons derived from P19 embryonal carcinoma cells. Canzoniero, L.M., Sensi, S.L., Turetsky, D.M., Finley, M.F., Choi, D.W., Huettner, J.E. J. Neurosci. Res. (1996) [Pubmed]
 
WikiGenes - Universities