The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Purification of heparan sulfate D-glucosaminyl 3-O-sulfotransferase.

The cellular generation of proteoglycans with anticoagulant heparan sulfate (HSPGact) is determined by microsomal "HSact conversion activity" that functions in concert with the sulfate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to convert nonanticoagulant heparan sulfate (HSinact) to anticoagulant heparan sulfate (HSact) (Shworak, N. W., Fritze, L. M. S., Liu, J., Butler, L. D., and Rosenberg, R. D. (1996) J. Biol. Chem. 271, 27063-27071). Suspension cultures of L-33(+) cells in serum-free medium produce HSPGact and secrete HSact conversion activity. The secreted protein exhibiting HSact conversion activity was isolated by subjecting large volumes of conditioned suspension culture medium to heparin-AF Toyopearl affinity chromatography, Mono Q-FPLC, TSK SW3000-HPLC, and 3',5'-ADP-agarose affinity chromatography. The final product was purified approximately 700,000-fold relative to cellular material with a 5% overall recovery of HSact conversion activity. The isolated protein migrated on SDS-polyacrylamide gel electrophoresis as a broad band of Mr = 46,000 and co-migrated on nondenaturing acidic pH gel electrophoresis with HSact conversion activity. The purified component was identified as heparan sulfate D-glucosaminyl 3-O-sulfotransferase because it transferred sulfate from [35S]PAPS to the 3-O-position of D-glucosamine and D-glucosamine 6-O-sulfate of HSact precursor and HSinact precursor to produce nearly equivalent amounts of labeled HSact and HSinact. The exhaustive modification of wild-type LTA cell [35S]HS with either microsomal HSact conversion activity or purified enzyme increased HSact content from 9 to approximately 36%, which indicates that microsomal HSact conversion activity predominantly reflects the level of a 3-O-sulfotransferase that converts HSact precursor into HSact. The kinetic parameters of purified 3-O-sulfotransferase were determined for modification of HSact precursor and HSinact precursor. The apparent KM* and Vmax* with respect to PAPS concentration for sulfation of HSact precursor and HSinact precursor were 2.4 microM and 23 fmol of sulfate/min/ng of enzyme and 2.1 microM and 38 fmol of sulfate/min/ng of enzyme, respectively. There was substrate inhibition of the sulfation reaction at elevated HS concentration. The apparent KM* and Vmax* with respect to GAG concentration for sulfation of HSact precursor and HSinact precursor were 16 nM and 120 fmol of sulfate/min/ng of enzyme and 17 nM and 240 fmol of sulfate/min/ng of enzyme, respectively. The observation that purified 3-O-sulfotransferase catalyzes sulfation of HSact precursor and HSinact precursor in conjunction with a documented discordant regulation of 3-O-sulfate content in HSinact and HSact suggests that two discrete forms of the enzyme may exist.[1]

References

  1. Purification of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. Liu, J., Shworak, N.W., Fritze, L.M., Edelberg, J.M., Rosenberg, R.D. J. Biol. Chem. (1996) [Pubmed]
 
WikiGenes - Universities