The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Developmental expression and CORT-regulation of TGF-beta and EGF receptor mRNA during mouse palatal morphogenesis: correlation between CORT-induced cleft palate and TGF-beta 2 mRNA expression.

Glucocorticoids (CORT) have been shown to induce cleft palate in mice. Although the pathogenetic pathway of CORT-induced cleft palate has been investigated for several decades, the molecular details remain to be elucidated. Since growth factors have been shown to regulate palate morphogenesis, and the expression of several growth factors or their receptors, e.g. TGF-beta, EGF receptor (EGF-R), are known to be modulated by CORT, we postulate that CORT modulation of growth factor (or receptor) gene expression is a key mechanism involved in CORT-induced cleft palate. To test this hypothesis, we analyzed the steady-state levels (Northern and RNase protection) and developmental expression (in situ hybridization) of four CORT-responsive genes--TGF-Beta 1, TGF- beta 2, TGF-beta 3, and EGF receptor (EGF-R)--in developing mouse palates in the presence or absence of exogenous CORT. Pregnant B10.A dams were injected on day 12 of gestation with CORT or sham-injected and embryonic palates were collected at 1, 2, and 3 days postinjection (E13-E15). During mouse palate development, significant increases in TGF-beta 1 and TGF-beta 3 mRNA levels, as well as significant decrease in TGF-beta 2 mRNA levels, are detected; no significant difference in EGF-R transcript level is observed with progressive development. In CORT-exposed palates, we demonstrate no significant differences in the direction or magnitude of change with time in TGF-beta 1, TGF-beta 3, and EGF-R mRNA levels compared to controls. However, CORT delays by 1 day the down-regulation of palatal TGF-beta 2 transcript normally seen on day 14 of gestation. TGF-beta 2 is known to inhibit cell proliferation. The level of TGF-beta 2 mRNA, the only isoform primarily expressed in the palatal mesenchyme, significantly decreases with progressive palatal development; this down-regulation of TGF-beta 2 expression is associated with increased mesenchymal cell proliferation and palatal shelf growth. CORT, at a critical stage of palatogenesis, induces a delay in the normal down-regulation of TGF-beta 2 gene expression. Given that CORT is known to inhibit mesenchymal cell proliferation and palatal shelf growth, we conclude that the CORT-induced delay in the normal down-regulation of TGF-beta 2 gene expression is probably key event in the pathogenesis of CORT-induced cleft palate.[1]

References

 
WikiGenes - Universities