The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli.

Different approaches to increasing carbon commitment to aromatic amino acid biosynthesis were compared in isogenic strains of Escherichia coli. In a strain having a wild-type PEP:glucose phosphotransferase (PTS) system, inactivation of the genes encoding pyruvate kinase (pykA and pykF) resulted in a 3.4 fold increase in carbon flow to aromatic biosynthesis. In a strain already having increased carbon flow to aromatics by virtue of overexpression of the tktA gene (encoding transketolase), the pykA and/or pykf mutations had no effect. A PTS- glucose+ mutant showed a 1.6-fold increase in carbon flow to aromatics compared to the PTS+ control strain. In the PTS- glucose+ host background, overexpression of tktA caused a further 3.7-fold increase in carbon flow, while inactivation of pykA and pykF caused a 5.8-fold increase. When all of the variables tested (PTS-glucose+, pykA, pykF, and overexpressed tktA) were combined in a single strain, a 19.9-fold increase in carbon commitment to aromatic biosynthesis was achieved.[1]

References

 
WikiGenes - Universities