The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The role of the piriform cortex in kindling.

In epilepsy research, there is growing interest in the role of the piriform cortex (PC) in the development and maintenance of limbic kindling and other types of limbic epileptogenesis leading to complex partial seizures, i.e. the most common type of seizures in human epilepsy. The PC ("primary olfactory cortex") is the largest area of the mammalian olfactory cortex and receives direct projections from the olfactory bulb via the lateral olfactory tract (LOT). Beside the obvious involvement in olfactory perception and discrimination, the PC, because of its unique intrinsic associative fiber system and its various connections to and from other limbic nuclei, has been implicated in the study of memory processing, spread of excitatory waves, and in the study of brain disorders such as epilepsy with particular emphasis on the kindling model of temporal lobe epilepsy with complex partial seizures. The interest in the kindling model is based primarily on the following observations. (1) The PC contains the most susceptible neural circuits of all forebrain regions for electrical (or chemical) induction of limbic seizures. (2) During electrical stimulation of other limbic brain regions, broad and large afterdischarges can be observed in the ipsilateral PC, indicating that the PC is activated early during the kindling process. (3) The interictal discharge, which many consider to be the hallmark of epilepsy, originates in the PC, independent of which structure serves as the kindled focus. (4) Autoradiographic studies of cerebral metabolism in rat amygdala kindling show that, during focal seizures, the area which exhibits the most consistent increase in glucose utilization is the ipsilateral paleocortex, particularly the PC. (5) During the commonly short initial afterdischarges induced by stimulation of the amygdala at the early stages of kindling, the PC is the first region that exhibits induction of immediate-early genes, such as c-fos. (6) The PC is the most sensitive brain structure to brain damage by continuous or frequent stimulation of the amygdala or hippocampus. (7) Amygdala kindling leads to a circumscribed loss of GABAergic neurons in the ipsilateral PC, which is likely to explain the increase in excitability of PC pyramidal neurons during kindling. (8) Kindling of the amygdala or hippocampus induces astrogliosis in the PC, indicating neuronal death in this brain region. Furthermore, activation of microglia is seen in the PC after amygdala kindling. (9) Complete bilateral lesions of the PC block the generalization of seizures upon kindling from the hippocampus or olfactory bulb. Incomplete or unilateral lesions are less effective in this regard, but large unilateral lesions of the PC and adjacent endopiriform nucleus markedly increase the threshold for induction of focal seizures from stimulation of the basolateral amygdala (BLA) prior to and after kindling, indicating that the PC critically contributes to regulation of excitability in the amygdala. (10) Potentiation of GABAergic neurotransmission in the PC markedly increases the threshold for induction of kindled seizures via stimulation of the BLA, again indicating a critical role of the PC in regulation of seizure susceptibility of the amygdala. Microinjections of NMDA antagonists or sodium channel blockers into the PC block seizure generalization during kindling development. (11) Neurophysiological studies on the amygdala-PC slice preparation from kindled rats showed that kindling of the amygdala induces long-lasting changes in synaptic efficacy in the ipsilateral PC, including spontaneous discharges and enhanced susceptibility to evoked burst responses. The epileptiform potentials in PC slice preparations from kindled rats seem to originate in neuron at the deep boundary of PC. Spontaneous firing and enhanced excitability of PC neurons in response to kindling from other sites is also seen in vivo, substantiating the fact that kindling induces long-lasting changes in the PC c[1]


  1. The role of the piriform cortex in kindling. Löscher, W., Ebert, U. Prog. Neurobiol. (1996) [Pubmed]
WikiGenes - Universities