The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Neomycin inhibits K+-induced force and Ca2+ channel current in rat arterial smooth muscle.

The techniques of small vessel isometric myography and patch clamp were used to investigate the action of neomycin on K+-induced isometric force and voltage-gated Ca2+ channel currents in rat arterial smooth muscle. Neomycin and the dihydropyridine (DHP) Ca2+ channel antagonist (-)202-791 concentration-dependently and reversibly inhibited 40 mM K+-induced isometric force in rings of rat mesenteric and basilar arteries (IC50 values of 70 microM and 1. 2 nM, respectively, n = 10 and 4). Elevation of [Ca2+]o by a factor of 2 significantly reduced the IC50 values for inhibition of K+-induced force for both neomycin and (-)202-791 (192 microM and 3. 7 nM, respectively, n = 6 and 4), but did not affect the Hill coefficient of the concentration/effect relationships. In patch-clamp experiments using freshly isolated basilar arterial myocytes, the voltage-gated inward current carried by Ba2+ was reversibly and concentration-dependently inhibited by neomycin (IC50 32 microM, n = 3). The concentration/effect curve for inhibition of the inward Ba2+ current by neomycin was significantly shifted to the right when [Ba2+]o was raised from 1.8 mM to 10 mM (IC50 144 microM, n = 8). Our findings suggest that neomycin relaxes high-K+-induced force in rat isolated mesenteric and basilar arteries largely by inhibition of voltage-dependent and DHP-sensitive Ca2+ channels.[1]

References

  1. Neomycin inhibits K+-induced force and Ca2+ channel current in rat arterial smooth muscle. Langton, P.D., Farley, R., Everitt, D.E. Pflugers Arch. (1996) [Pubmed]
 
WikiGenes - Universities