The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A single amino acid substitution, Gly117His, confers phosphotriesterase (organophosphorus acid anhydride hydrolase) activity on human butyrylcholinesterase.

The G117H mutant of human butyrylcholinesterase (EC 3.1.1.8) was expressed in Chinese hamster ovary cells. Substitution of Gly 117 with His to make the G117H mutant endowed butyrylcholinesterase with the ability to catalyze the hydrolysis of organophosphate esters. G117H was still able to hydrolyze butyrylthiocholine, benzoylcholine, and o-nitrophenyl butyrate, but in addition it had acquired the ability to hydrolyze the antiglaucoma drug echothiophate and the pesticide paraoxon. Wild-type butyrylcholinesterase was irreversibly inhibited by echothiophate and paraoxon, but G117H regained 100% activity within 2-3 min following reaction with these compounds. On a polyacrylamide gel, the same bands that stained for activity with butyrylthiocholine also stained for activity with echothiophate. G117H is the only enzyme known that hydrolyzes echothiophate. Diethoxyphosphorylated G117H aged with a half-time of 5.5 h, a rate 600 times slower than the rate of hydrolysis. Echothiophate and paraoxon were hydrolyzed with the same kcat of 0.75 min-1. This calculates to a rate acceleration of 100,000-fold for hydrolysis of echothiophate and paraoxon by the G117H mutant compared to the nonenzymatic rate.[1]

References

  1. A single amino acid substitution, Gly117His, confers phosphotriesterase (organophosphorus acid anhydride hydrolase) activity on human butyrylcholinesterase. Lockridge, O., Blong, R.M., Masson, P., Froment, M.T., Millard, C.B., Broomfield, C.A. Biochemistry (1997) [Pubmed]
 
WikiGenes - Universities