The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cloning of a novel mitogen-activated protein kinase kinase kinase, MEKK4, that selectively regulates the c-Jun amino terminal kinase pathway.

Mitogen-activated protein kinases (MAPKs) are components of sequential kinase cascades that are activated in response to a variety of extracellular signals. Members of the MAPK family include the extracellular response kinases (ERKs or p42/44(MAPK)), the c-Jun amino-terminal kinases (JNKs), and the p38/Hog 1 protein kinases. MAPKs are phosphorylated and activated by MAPK kinases (MKKs or MEKs), which in turn are phosphorylated and activated by MKK/ MEK kinases ( Raf and MKKK/MEKKs). We have isolated two cDNAs encoding splice variants of a novel MEK kinase, MEKK4. The MEKK4 mRNA is widely expressed in mouse tissues and encodes for a protein of approximately 180 kDa. The MEKK4 carboxyl-terminal catalytic domain is approximately 55% homologous to the catalytic domains of MEKKs 1, 2, and 3. The amino-terminal region of MEKK4 has little sequence homology to the previously cloned MEKK proteins. MEKK4 specifically activates the JNK pathway but not ERKs or p38, distinguishing it from MEKKs 1, 2 and 3, which are capable of activating the ERK pathway. MEKK4 is localized in a perinuclear, vesicular compartment similar to the Golgi. MEKK4 binds to Cdc42 and Rac; kinase-inactive mutants of MEKK4 block Cdc42/Rac stimulation of the JNK pathway. MEKK4 has a putative pleckstrin homology domain and a proline-rich motif, suggesting specific regulatory functions different from those of the previously characterized MEKKs.[1]

References

 
WikiGenes - Universities