The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Duality of glutamatergic and GABAergic control of pulsatile GnRH secretion by rat hypothalamic explants: I. Effects of antisense oligodeoxynucleotides using explants including or excluding the preoptic area.

Using antisense oligodeoxynucleotides we aimed to study the role of N-methyl-D-aspartate (NMDA) and gamma-aminobutyric acid (GABA) receptors in the mechanism of Gonadotrophin-releasing hormone (GnRH) secretion in vitro. Since GnRH cell bodies are located in the rat preoptic hypothalamus while most GnRH terminals are in the retrochiasmatic hypothalamus, we compared the effects of oligodeoxynucleotides on explants of the whole (preoptic area included) or retrochiasmatic hypothalamus. When GnRH secretion is evoked by muscimol and NMDA, a time-related reduction of GnRH secretion is caused by antisense oligodeoxynucleotides for the beta subunit of the GABAA receptor and the NR2A subunit of the NMDA receptor, respectively. After 6-7 h, binding studies of tritiated ligands show a decrease in GABA- and NMDA-receptor expression. While these antisense effects are observed using whole explants, no such effects are seen using retrochiasmatic explants, indicating that the facilitatory GABAA and NMDA receptors are encoded in the preoptic area. Using several missense oligodeoxynucleotides or antisense for the NR2B and NR2C subunits of the NMDA receptor, the muscimol- and NMDA-evoked release of GnRH is not affected. When spontaneous pulsatile GnRH secretion is studied, the NR2A antisense oligodeoxynucleotides cause an increase of the interpulse interval. This increase is seen using whole but not retrochiasmatic explants. In contrast, the GABAA and NR2C antisense oligodeoxynucleotides result in a reduction of GnRH interpulse interval. Such a reduction is seen using whole as well as retrochiasmatic explants, indicating that the GABAA and NMDA receptors which mediate inhibition of GnRH pulsatility are encoded in the retrochiasmatic hypothalamus. We conclude that NMDA receptors (NR2A subunit) encoded in the preoptic hypothalamus mediate a facilitatory effect on GnRH pulsatility while GABAA and NMDA (NR2C subunit) receptors encoded in the retrochiasmatic hypothalamus mediate an inhibition of GnRH pulsatility. Pulsatile GnRH secretion is affected differently than the agonist-evoked release of GnRH suggesting that the GnRH secretory neurons and the GnRH pulse generator consist of different cellular entities.[1]

References

  1. Duality of glutamatergic and GABAergic control of pulsatile GnRH secretion by rat hypothalamic explants: I. Effects of antisense oligodeoxynucleotides using explants including or excluding the preoptic area. Bourguignon, J.P., Gérard, A., Purnelle, G., Czajkowski, V., Yamanaka, C., Lemaître, M., Rigo, J.M., Moonen, G., Franchimont, P. J. Neuroendocrinol. (1997) [Pubmed]
 
WikiGenes - Universities