The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effects of L-arginine and N omega-nitro-L-arginine methyl ester on cardiac perfusion and function after 1-day cold preservation of isolated hearts.

BACKGROUND: Coronary flow responses to endothelium-dependent (acetylcholine [ACh] or 5-hydroxytryptamine [5-HT]) and endothelium-independent (adenosine [ADE] or nitroprusside [NP]) vasodilators may be altered before and after 1-day hypothermia during the perfusion of arginine vasopressin ( AVP), D-arginine (D-ARG), L-arginine (L-ARG), or nitro-L-arginine methyl ester (L-NAME). METHODS AND RESULTS: Four groups of guinea pig hearts (37.5 degrees C [warm]) were perfused for 6 hours with AVP, L-ARG, L-NAME, or nothing (control). Five heart groups (cold) were perfused with AVP, D-ARG, L-ARG, L-NAME, or nothing (control), but after 2 hours they were perfused at low flow for 22 hours at 3.7 degrees C and again for 3 hours at 37.5 degrees C. ADE, butanedione monoxime, and NP were given for cardioprotection before, during, and after hypothermia. In warm groups, L-ARG did not alter basal flow or ADE, ACh, 5-HT, or NP responses, whereas L-NAME and AVP reduced basal flow and the ADE response, abolished ACh and 5-HT responses, and increased the NP response. In cold groups after hypothermia. L-ARG did not alter basal flow, but L-NAME, AVP, D-ARG, and control reduced flow. In the postcold L-ARG group, ACh increased peak flow, but NP did not increase flow in other cold groups. Effluent L-ARG and L-CIT in the cold control group fell from 64 +/- 9 and 9 +/- 1 micrograms/L at 1 hour to 36 +/- 5 and 5 +/- 1 micrograms/L at 25 hours, respectively. Left ventricular pressure and cardiac efficiency improved more in the postcold L-ARG group than in the postcold D-ARG, AVP, and L-NAME groups. CONCLUSIONS: Endogenous effluent levels of L-ARG and L-CIT decrease after 24 hours in isolated hearts, whereas perfusion of L-ARG improves cardiac performance, basal coronary flow, and vasodilator responses. In contrast, L-NAME, L-ARG, and AVP limit flow and performance but maintain a partial vasodilatory response to NP. Sustained release of NO may account for improved performance after L-ARG after hypothermia.[1]

References

  1. Effects of L-arginine and N omega-nitro-L-arginine methyl ester on cardiac perfusion and function after 1-day cold preservation of isolated hearts. Stowe, D.F., Boban, M., Roerig, D.L., Chang, D., Palmisano, B.W., Bosnjak, Z.J. Circulation (1997) [Pubmed]
 
WikiGenes - Universities