The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Dual functions of ribosome recycling factor in protein biosynthesis: disassembling the termination complex and preventing translational errors.

We summarize in this communication the data supporting the two functions of ribosome recycling factor ( RRF, originally called ribosome releasing factor). The first described role involves the disassembly of the termination complex which consists of mRNA, tRNA and the ribosome bound to the mRNA at the termination codon. This process is catalyzed by two factors, elongation factor G ( EF-G) and RRF. RRF stimulated protein synthesis as much as eight-fold in the in vitro lysozyme synthesis system, when ribosomes were limiting. In the absence of RRF, ribosomes remain mRNA-bound at the termination codon and translate downstream codons. In the in vitro system, the site of reinitiation is the triplet codon 3' to the termination codon. RRF is an essential protein for bacterial life. Temperature sensitive (ts) RRF mutants were isolated and in vivo translational reinitiation due to inactivation of ts RRF was demonstrated using the beta-galactosidase reporter gene placed downstream from the termination codon. A second function of RRF involves preventing errors in translation. In polyphenylalanine synthesis programmed by polyuridylic acid, misincorporation of isoleucine, leucine or a mixture of amino acids was stimulated upto 17-fold when RRF was omitted from the in vitro system. RRF did not influence the large error (10-fold increase) induced by streptomycin. This means that RRF participates not only in the disassembly of the termination complex but also in peptide elongation. Extending this concept and its conventional role for releasing ribosomes from mRNA, involvement of RRF in the reinitiation in the 3A' system (a construct using S aureus protein A, a collaborative work with Dr Isaksson), in programmed frame shifting, in trans-translation with 10Sa RNA (collaborative work with Dr Muto), and in the reinitiation downstream from the ORF A of the IS 3 (insertion sequence of a transposon, collaborative work with Dr Sekine) are discussed on the basis of preliminary data to be published elsewhere. Finally, we review the known RRF sequences from various organisms including eukaryotes and discuss the possible mechanism for disassembly of the eukaryotic termination complex.[1]

References

 
WikiGenes - Universities