The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Drug metabolizing enzyme induction by benzoquinolines, acridine, and quinacrine; tricyclic aromatic molecules containing a single heterocyclic nitrogen.

Rats were treated with nitrogen-containing phenanthrene (3,4-, 5,6-, or 7,8-benzoquinoline) or anthracene (acridine or quinacrine) derivatives at a dose of 75 mg/kg, daily for 3 days. The hepatic drug metabolizing enzyme response ranged from no induction (quinacrine) through low (5,6-benzoquinoline), intermediate (acridine), and high (3,4-benzoquinoline) magnitude increases of only phase II enzymes, to induction of both phase I and phase II enzymes (7,8-benzoquinoline). The phase I enzyme response of 7,8-benzoquinoline was an induction of CYP1A. All three benzoquinolines, but neither anthracene derivative, elevated NAD(P)H quinone oxidoreductase activity. A similar pattern but of lesser magnitude was seen with glutathione S-transferase activity. 3,4-Benzoquinoline was the only agent to significantly increase microsomal epoxide hydrolase activity (2,3-fold). Both 3,4- and 7,8-benzoquinoline increased UDP-glucuronosyltransferase activity toward 4-nitrophenol (40% and 70%, respectively), but only the 3,4-isomer increased activity toward morphine (75%), diclofenac (75%), and testosterone (23%), and only the 7,8-isomer increased activity toward chloramphenicol (105%). 3,4-Benzoquinoline elevated the hepatic mRNA concentration of UGT2B1 but not UGT1*6. Acridine treatment increased UDP-glucuronosyltransferase activity toward morphine (47%), 1-naphthol (28%), testosterone (19%), and estrone (19%). Quinacrine failed to elevate any UDP-glucuronosyltransferase activity and depressed activities toward testosterone and estrone by 20%. This study shows that some tricyclic aromatic compounds containing a single heterocyclic nitrogen atom have the potential for use as chemoprotective agents based upon their ability to selectively induce only phase II enzymes.[1]

References

 
WikiGenes - Universities