The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4.

Smad2 and Smad4 are related tumour-suppressor proteins, which, when stimulated by the growth factor TGF-beta, form a complex to inhibit growth. The effector function of Smad2 and Smad4 is located in the conserved carboxy-terminal domain (C domain) of these proteins and is inhibited by the presence of their amino-terminal domains (N domain). This inhibitory function of the N domain is shown here to involve an interaction with the C domain that prevents the association of Smad2 with Smad4. This inhibitory function is increased in tumour-derived forms of Smad2 and 4 that carry a missense mutation in a conserved N domain arginine residue. The mutant N domains have an increased affinity for their respective C domains, inhibit the Smad2-Smad4 interaction, and prevent TGF beta- induced Smad2-Smad4 association and signalling. Whereas mutations in the C domain disrupt the effector function of the Smad proteins, N-domain arginine mutations inhibit SMAD signalling through a gain of autoinhibitory function. Gain of autoinhibitory function is a new mechanism for inactivating tumour suppressors.[1]

References

  1. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Hata, A., Lo, R.S., Wotton, D., Lagna, G., Massagué, J. Nature (1997) [Pubmed]
 
WikiGenes - Universities