The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effects of octreotide and a-tocopherol on bacterial translocation in experimental intestinal obstruction: a microbiological, light and electronmicroscopical study.

BACKGROUND/AIMS: Bacterial translocation induced by intestinal obstruction is suggested to be due to increased intestinal luminal volume, leading to intestinal overgrowth with certain enteric microorganisms and intestinal mucosal damage. If this suggestion is true, maintenance of intestinal mucosal integrity by a cytoprotective agent, a-tocopherol, and inhibition of gastrointestinal secretions by octreotide should decrease the incidence of bacterial translocation and extent of mucosal injury due to intestinal obstruction. METHODS: Complete intestinal obstruction was created in the distal ileum of male Wistar Albino rats by a single 3-0 silk suture. The animals received subcutaneous injections of 1 ml of physiologic saline (group 1) (PS 24) and 1 ml of saline containing octreotide acetate (100 micrograms/kg) (group 2) (OC 24), at 0, 12 and 24 hours of obstruction. In group 3 (PS 48) and group 4 (OC 48), the rats were treated with subcutaneous physiologic saline (1 ml) and octreotide acetate (100 micrograms/kg), respectively, beginning at the time of obstruction and every 12 hours for 48 hours. The rats in group 5 (Toc 24), were pretreated with intramuscular a-tocopherol 500 mg/kg on day 1 and 8, and underwent laparotomy on day 9. A third dose of a-tocopherol was injected at the time of obstruction on day 9 and no treatment was given thereafter. We tested the incidence of bacterial translocation in systemic organs and circulation and evaluated the histopathological changes in all groups. RESULTS: Treatment with octreotide acetate was found to be ineffective in reducing the incidence of translocation, with no histopathological improvement. Mucosal damage scores, on the other hand, in the a-tocopherol group were statistically less than those in the octreotide and control groups (p < 0.05). Additionally, a-tocopherol treatment decreased the incidence of organ invasion with translocating bacteria, although this difference did not reach statistical significance. CONCLUSION: Octreotide acetate treatment in complete intestinal obstruction has no effect on the incidence of bacterial translocation. a-Tocopherol, on the other hand, has a cytoprotective effect on intestinal mucosa in intestinal obstruction which, in turn, is thought to decrease bacterial translocation when used in physiological doses and prophylactically.[1]

References

  1. Effects of octreotide and a-tocopherol on bacterial translocation in experimental intestinal obstruction: a microbiological, light and electronmicroscopical study. Reis, E., Kama, N.A., Coskun, T., Korkusuz, P., Ors, U., Aksoy, M., Kulaçoglu, S. Hepatogastroenterology (1997) [Pubmed]
 
WikiGenes - Universities