The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Comparison of two different methods for inactivation of viruses in serum.

In order to compare protocols for inactivation of viruses potentially present in biological specimens, three different model viruses were treated in bovine serum by two different inactivation methods: samples were subjected either to chemical inactivation with ethylenimine (El) at concentrations of 5 and 10 mM at 37 degrees C for periods up to 72 h or to electron-beam irradiation in frozen and liquid form with doses varying between 11 and 46 kGy. The chemical inactivation resulted in nonlinear tailing curves in a semilogarithmic plot of virus titer versus inactivation time showing non-first-order kinetics with respect to virus titer. The time for inactivation of 7 log10 units of porcine parvovirus (PPV) was about 24 h for both El concentrations, whereas 5 log10 units of bovine viral diarrhea virus (BVDV) was inactivated in 2 h for both El concentrations and 6 log10 units of porcine enterovirus (PEV) was inactivated within 3 h. The inactivation with electron-beam irradiation resulted in almost linear curves in a semilogarithmic plot of virus titer versus irradiation dose, reflecting a first-order inactivation. The rate of inactivation was almost twice as fast in the liquid samples compared to the rate in frozen ones, giving values of the doses needed to reduce virus infectivity 1 log10 unit for inactivation of PPV of 11.8 and 7.7 kGy for frozen and liquid samples, respectively, whereas the corresponding values for BVDV were 4.9 and 2.5 kGy, respectively, and those for PEV were 6.4 and 4.4 kGy, respectively. The nonlinear inactivation with El makes it impossible to extrapolate the curves beyond the virus detection limit and thereby predict the necessary time for complete inactivation, i.e., to a level beyond the detection limit, of virus in a given sample. The first-order inactivation obtained with electron-beam irradiation makes such a prediction possible and justifiable. The two methods are discussed with respect to their different kinetics and applicability under different circumstances and criteria for inactivation, and considerations for choice of method are discussed.[1]

References

  1. Comparison of two different methods for inactivation of viruses in serum. Preuss, T., Kamstrup, S., Kyvsgaard, N.C., Nansen, P., Miller, A., Lei, J.C. Clin. Diagn. Lab. Immunol. (1997) [Pubmed]
 
WikiGenes - Universities