The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Infectivity enhancement by human immunodeficiency virus type 1 Nef is independent of its association with a cellular serine/threonine kinase.

Nef proteins from human immunodeficiency virus type 1 isolate SF2 (HIV-1SF2) and simian immunodeficiency virus isolate mac239 (SIVmac239) have been found to associate with a cellular serine/threonine kinase designated NAK. We have recently shown that the association of Nef with NAK is isolate dependent. To identify the structural basis for Nef-kinase association, several chimeric molecules were constructed between SF2 Nef (binding NAK) and 233 Nef (a primary isolate not binding NAK) and stably expressed in HuT-78 human T cells via retrovirus-mediated gene transfer. The Nef 233/ SF2/ SF2 chimera in which the N-terminal 37 amino acids of SF2 Nef were replaced by those of 233 Nef showed the same ability as SF2 Nef to bind NAK. The Nef 233/ SF2/233 chimera in which the N-terminal 37 amino acids and the C-terminal 72 amino acids of SF2 Nef were replaced by corresponding sequences from 233 Nef completely lost the ability to associate with the kinase activity. Furthermore, replacement of the C-terminal 72 amino acids of 233 Nef with the equivalent SF2 sequence (chimera 233/233/ SF2) fully restored kinase association to 233 Nef. These results suggest that (i) the core of Nef is not sufficient for NAK binding, (ii) the C terminus of SF2 Nef contains structural determinants important for association with NAK, and (iii) the failure of 233 Nef to bind NAK is due to a defect in its C terminus. Taking advantage of the C terminus of 233 Nef being nonfunctional and using an infectious clone of HIV-1SF2, we show that association with NAK is not required for Nef-mediated infectivity enhancement. While the strong and reproducible association of some Nef isolates with NAK has been clearly established, the role of NAK in Nef function remains to be fully elucidated.[1]

References

 
WikiGenes - Universities