The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome.

Individuals with primary trimethylaminuria exhibit a body odour reminiscent of rotting fish, due to excessive excretion of trimethylamine (TMA; refs 1-3). The disorder, colloquially known as fish-odour syndrome, is inherited recessively as a defect in hepatic N-oxidation of dietary-derived TMA and cannot be considered benign, as sufferers may display a variety of psychosocial reactions, ranging from social isolation of clinical depression and attempted suicide. TMA oxidation is catalyzed by flavin-containing mono-oxygenase (FMO; refs 7,8), and tissue localization and functional studies have established FMO3 as the form most likely to be defective in fish-odour syndrome. Direct sequencing of the coding exons of FMO3 amplified from a patient with fish-odour syndrome identified two missense mutations. Although one of these represented a common polymorphism, the other, a C-->T transition in exon 4, was found only in an affected pedigree, in which it segregated with the disorder. The latter mutation predicts a proline-->leucine substitution at residue 153 and abolishes FMO3 catalytic activity. Our results indicate that defects in FMO3 underlie fish-odour syndrome and that the Pro 153-->Leu 153 mutation described here is a cause of this distressing condition.[1]

References

  1. Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Dolphin, C.T., Janmohamed, A., Smith, R.L., Shephard, E.A., Phillips, I.R. Nat. Genet. (1997) [Pubmed]
 
WikiGenes - Universities