The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The age-associated alterations in late diastolic function in mice are improved by caloric restriction.

Caloric restriction reduces the magnitude of many age-related changes in rodents. Cardiac function is altered with senescence in mice, rats, and healthy humans. We examined the effects of life-long caloric restriction on diastolic and systolic cardiac function in situ using Doppler techniques in ad libitum-fed 30- to 32-month-old (AL) and calorically restricted (CR) 32- to 35-month-old female B6D2-F1 hybrid mice. The heart weight to body weight ratio was similar in AL (5.74 +/- .24 mg/g) and CR (5.68 +/- .20 mg/g) mice. Two systolic functional parameters known to decrease with age in both humans and mice, peak aortic velocity and aortic acceleration, were unchanged by CR compared to AL. In contrast, diastolic function was altered by caloric restriction. Although left ventricular peak early filling velocity (E) was not different between CR and AL, peak atrial filling velocity (A) was 50% lower in CR compared to AL (p < .001). The ratio of early diastolic filling to atrial filling (E/A ratio) was 64% higher in the CR (2.74 +/- .31) than the AL (1.55 +/- .07; p = .004). The fraction of ventricular filling due to atrial systole, the atrial filling fraction, was also reduced in CR (.21 +/- .04) compared to AL (.36 +/- .02; p = .007). These changes occurred in CR without alteration in E deceleration time, which is consistent with improved diastolic function in CR. Through mechanisms that remain unknown, lifelong caloric restriction may prevent the age-related impairments in late diastolic function but does not alter the impairments in systolic or early diastolic cardiac function.[1]

References

  1. The age-associated alterations in late diastolic function in mice are improved by caloric restriction. Taffet, G.E., Pham, T.T., Hartley, C.J. J. Gerontol. A Biol. Sci. Med. Sci. (1997) [Pubmed]
 
WikiGenes - Universities