The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Membrane-specific regulation of Cl- channels by purinergic receptors in rat submandibular gland acinar and duct cells.

Measurement of [Cl-]i and the Cl- current in the rat salivary submandibular gland (SMG) acinar and duct cells was used to evaluate the role of Cl- channels in the regulation of [Cl-]i during purinergic stimulation. Under resting conditions [Cl-]i averaged 56 +/- 8 and 26 +/- 7 mM in acinar and duct cells, respectively. In both cells, stimulation with 1 mM ATP resulted in Cl- efflux and subsequent influx. Inhibition of NaKCl2 cotransport had no effect on [Cl-]i changes in duct cells and inhibited only about 50% of Cl- uptake in acinar cells. Accordingly, low levels of expression of NaKCl2 cotransporter protein were found in duct cells. Acinar cells expressed high levels of the cotransporter. Measurement of Cl- current under selective conditions revealed that acinar and duct cells express at least five distinct Cl- channels; a ClCO-like, volume-sensitive, inward rectifying, Ca2+-activated and CFTR-like Cl- currents. ATP acting on both cell types activated at least two channels, the Ca2+-activated Cl- channel and a Ca2+-independent glibenclamide-sensitive Cl--current, possibly cystic fibrosis transmembrane regulator (CFTR). Of the many nucleotides tested only 2'-3'-benzoylbenzoyl (Bz)-ATP and UTP activated Cl- channels in SMG cells. Despite their relative potency in increasing [Ca2+]i, BzATP in both SMG cell types largely activated the Ca2+-independent, glibenclamide-sensitive Cl- current, whereas UTP activated only the Ca2+-dependent Cl- current. We interpret this to suggest that BzATP and UTP largely activate Cl- channels residing in the membrane expressing the receptor for the active nucleotide. The present studies reveal a potentially new mechanism for transcellular Cl- transport in a CFTR-expressing tissue, the SMG. Coordinated action of the P2z (luminal) and P2u (basolateral) receptors can mediate part of the transcellular Cl- transport by acinar and duct cells to determine the final electrolyte composition of salivary fluid.[1]

References

 
WikiGenes - Universities