The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Replacement of the active site tyrosine of vaccinia DNA topoisomerase by glutamate, cysteine or histidine converts the enzyme into a site-specific endonuclease.

Vaccinia topoisomerase forms a covalent protein-DNA intermediate at 5'-CCCTT downward arrow sites in duplex DNA. The T downward arrow nucleotide is linked via a 3'-phosphodiester bond to Tyr-274 of the enzyme. Here, we report that mutant enzymes containing glutamate, cysteine or histidine in lieu of Tyr-274 catalyze endonucleolytic cleavage of a 60 bp duplex DNA at the CCCTT downward arrow site to yield a 3' phosphate-terminated product. The Cys-274 mutant forms trace levels of a covalent protein-DNA complex, suggesting that the DNA cleavage reaction may proceed through a cysteinyl-phosphate intermediate. However, the His-274 and Glu-274 mutants evince no detectable accumulation of a covalent protein-DNA adduct. Glu-274 is the most active of the mutants tested. The pH dependence of the endonuclease activity of Glu-274 (optimum pH = 6.5) is distinct from that of the wild-type enzyme in hydrolysis of the covalent adduct (optimum pH = 9.5). At pH 6.5, the Glu-274 endonuclease reaction is slower by 5-6 orders of magnitude than the rate of covalent adduct formation by the wild-type topoisomerase, but is approximately 20 times faster than the rate of hydrolysis by the wild-type covalent adduct. We discuss two potential mechanisms to account for the apparent conversion of a topoisomerase into an endonuclease.[1]

References

 
WikiGenes - Universities