Structure of IRF-1 with bound DNA reveals determinants of interferon regulation.
The family of interferon regulatory factor ( IRF) transcription factors is important in the regulation of interferons in response to infection by virus and in the regulation of interferon-inducible genes. The IRF family is characterized by a unique 'tryptophan cluster' DNA-binding region. Here we report the crystal structure of the IRF-1 region bound to the natural positive regulatory domain I ( PRD I) DNA element from the interferon-beta promoter. The structure provides the first three-dimensional view of a member of the growing IRF family, revealing a new helix-turn-helix motif that latches onto DNA through three of the five conserved tryptophans. The motif selects a short GAAA core sequence through an obliquely angled recognition helix, with an accompanying bending of the DNA axis in the direction of the protein. Together, these features suggest a basis for the occurrence of GAAA repeats within IRF response elements and provide clues to the assembly of the higher-order interferon-beta enhancesome.[1]References
- Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Escalante, C.R., Yie, J., Thanos, D., Aggarwal, A.K. Nature (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









