The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Influence of dilution rate on enzymes of intermediary metabolism in two freshwater bacteria grown in continuous culture.

Two freshwater bacteria, a Pseudomonas sp. and a Spirillum sp., were grown in continuous culture under steady-state conditions in L-lactate-, succinate-, ammonium- or phosphate-limited media. In Pseudomonas sp., NAD-independent and NAD-dependent L-lactate dehydrogenases, aconitase, isocitrate dehydrogenase and glucose 6-phosphate dehydrogenase activities increased up to 10-fold as the dilution rate (D) was decreased from 0.5 to 0.02 h-1, regardless of whether the growth-limiting nutrient was carbon, ammonium or phosphate. In contrast, 2-oxoglutarate dehydrogenase and succinate dehydrogenase activities were not influenced by D, and NADH oxidase activity increased with D. Spirillum sp. gave different results in some respects, but it also exhibited an increase in the activity of several enzymes at low D values. Such increases may emanate from release of catabolite repression, and catabolite repressors for the five enzymes in Pseudomonas sp. showing such increases are probably compounds of carbon, nitrogen and phosphorus. It is likely that increased enzyme syntheses in low D cultures represent the normal physiological state for bacteria in aquatic environments where growth occurs slowly under nutrient limitations. Such increases probably permit a more effective utilization of nutrients present at sub-saturating concentrations.[1]

References

 
WikiGenes - Universities