The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Hematopoietic remodeling in interferon-gamma-deficient mice infected with mycobacteria.

Control of intracellular bacterial infections requires interferon-gamma (IFN-gamma) both for establishing a Th1 T-cell response and for activating macrophages to kill the bacteria. Exposure of mice deficient in IFN-gamma to mycobacterial infection produces an immune response characterized by a Th2 T-cell phenotype, florid bacterial growth, and death. We report here that IFN-gamma-deficient mice infected with mycobacteria also undergo a dramatic remodeling of the hematopoietic system. Myeloid cell proliferation proceeds unchecked throughout the course of mycobacterial infection, resulting in a transition to extramedullary hematopoiesis. The splenic architecture of infected IFN-gamma-deficient mice is completely effaced by expansion of macrophages, granulocytes, and extramedullary hematopoietic tissue. These features coincide with splenomegaly, an increase in splenic myeloid colony-forming activity, and marked granulocytosis in the peripheral blood. Systemic levels of cytokines are elevated, particularly interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF). These results suggest that in addition to its central role in cellular immunity, IFN-gamma may be a key cytokine in coordinate regulation of immune effector cells and myelopoiesis. This model should be valuable for deciphering the cross-talk between the immune response and hematopoiesis during bacterial infection and for improving our understanding of the mechanisms that control chronic infections.[1]

References

 
WikiGenes - Universities