The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Theme and variation among silencing proteins in Saccharomyces cerevisiae and Kluyveromyces lactis.

The cryptic mating type loci in Saccharomyces cerevisiae act as reservoirs of mating type information used in mating type switching in homothallic yeast strains. The transcriptional silencing of these loci depends on the formation of a repressive chromatin structure that is reminiscent of heterochromatin. Silent information regulator (Sir) proteins 2-4 are absolutely required for silencing. To learn more about silencing, we investigated mating type and Sir proteins in the yeast Kluyveromyces lactis, which contains cryptic copies of the mating type genes. A functional homolog of SIR4 from K. lactis complements the silencing defect of sir4 null mutations in S. cerevisiae. K. lactis sir2 and sir4 mutant strains showed partial derepression of the silent alpha1 gene, establishing that the silencing role of these proteins is conserved. K. lactis sir2 mutants are more sensitive than the wild type to ethidium bromide, and K. lactis sir4 mutants are more resistant phenotypes that are not observed for the corresponding mutants of S. cerevisiae. Finally, the deletion of sir4 in the two yeasts leads to opposite effects on telomere length. Thus, Sir proteins from K. lactis have roles in both silencing and telomere length maintenance, reflecting conserved functional themes. The various phenotypes of sir mutants in K. lactis and S. cerevisiae, however, revealed unanticipated variation between their precise roles.[1]

References

 
WikiGenes - Universities