The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A kinetic study of site-directed mutants of Escherichia coli ADP-glucose pyrophosphorylase: the role of residue 295 in allosteric regulation.

The effects of amino acid substitutions at residue 295 on the regulatory properties of Escherichia coli ADP-glucose pyrophosphorylase were studied. In previous studies, this residue, altered from proline to serine (P295S) in the gene of a mutant strain of E. coli, resulted in a high-activity form of enzyme [higher activity in absence of activator fructose 1,6-bisphosphate (FBP), higher apparent affinity for FBP and substrates, and lower apparent affinity for the inhibitor, AMP]. The effects of size and charge on this site were explored by replacing Pro with Gly, Asp, Asn, Gln, or Glu. All mutant enzymes were expressed and purified for kinetic analysis. All mutant enzymes, to varying extents, were in more active form than the wild-type enzyme. Enzymes with a substituted negative charge (P295D, P295E) had the highest activity in the absence of FBP, while the P295G enzyme was most similar to the wild type. The P295D and P295E enzymes had the lowest apparent affinities for AMP; this effect was partially abolished by the neutral substitutions P295N and P295Q. Another mutation, G336D, had previously been found to produce an even higher activity enzyme form. In order to examine interactions between substitutions at the 295 and 336 positions, the double mutant P295D-G336D was constructed and characterized. The double mutant enzyme was more active in the absence of FBP, with a higher affinity for FBP and a lower apparent affinity for AMP than either single mutated enzyme. The significance of residue 295 in regulation is discussed.[1]

References

 
WikiGenes - Universities