The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mutations in the activation function-2 core domain of steroidogenic factor-1 dominantly suppresses PKA-dependent transactivation of the bovine CYP17 gene.

Steroidogenic factor-1 ( SF-1) is a nuclear receptor that is essential for the proper development and function of steroid hormone-producing cells. The activation function-2 (AF-2) domain in SF-1 is a short alpha-helix in the C terminus that is conserved with respect to other nuclear receptors and is important for transactivation of target genes. In order to investigate the possible role of the AF-2 domain of SF-1 in cAMP-dependent transcriptional regulation of the bovine steroid hydroxylase gene CYP17, mutations were introduced and the effects were characterized. The mutant SF-1 proteins were expressed at comparable levels in nonsteroidogenic Cos-1 cells that lack SF-1, and their abilities to bind an SF-1 site from the CYP17 gene were not affected. Transient transfections of wild-type and mutant SF-1 in Cos-1 cells showed that the capacity to transactivate a reporter gene under the control of the SF-1 site from CYP17 was reduced by the mutations in the AF-2 domain of SF-1. A point mutation in the AF-2 region, E454A, resulted in a relative reporter gene activity that was 21% of that observed with wild-type SF-1. Co-transfections of adrenocortical Y-1 cells, which express endogenous SF-1, with the catalytic subunit of cAMP-dependent protein kinase (PKA-C) and the SF-1-dependent reporter gene showed on average a 16-fold increase in activity in the presence of PKA-C. Introduction of the AF-2 mutants of SF-1 into Y-1 cells completely abolished the PKA-C-mediated stimulation of the reporter gene. The transdominant negative effect of the mutant SF-1 proteins suggests that the AF-2 domain is essential for the activation of SF-1 by the cAMP-dependent protein kinase-dependent signaling pathway.[1]

References

 
WikiGenes - Universities