The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Clostridium difficile toxins A and B are cation-dependent UDP-glucose hydrolases with differing catalytic activities.

Toxins A and B of Clostridium difficile are UDP-glucose glucosyltransferases that exert their cellular toxicity primarily through their abilities to monoglucosylate, and thereby inactivate, Rho family small GTPases. Toxin A also hydrolyzes UDP-glucose, although this activity is not well characterized. In this study, we measured the kinetics of UDP-glucose hydrolysis by toxins A and B and found significant differences in the catalytic activities of these two structurally homologous toxins. The toxins displayed similar Michaelis constants (Km) for UDP-glucose, but the maximal velocity (Vmax) of toxin B was approximately 5-fold greater than that of toxin A. Toxins A and B exert their enzymatic actions intracellularly, and, interestingly, we found that each toxin absolutely required K+ for optimal hydrolase activity; Na+ was inactive. The toxins also required certain divalent cations for activity and exhibited a significantly greater Vmax and lower Km in the presence of Mn2+ as compared with Mg2+. We conclude that C. difficile toxins A and B are cation-dependent UDP-glucose hydrolases that differ significantly in their catalytic activities, a finding that may have important implications in understanding their different cytotoxic effects.[1]


WikiGenes - Universities