The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Endothelin-1 is synthesized and inhibits cyclic adenosine monophosphate- dependent anion secretion by an autocrine/paracrine mechanism in gallbladder epithelial cells.

Ion and fluid transport across the biliary epithelium contributes to bile secretion. Since endothelin (ET)-1 affects ion transport activities and is released by human gallbladder- derived biliary epithelial cells in primary culture, we examined the expression of ET peptides and ET receptors and the influence of ET-1 on ion transport in this epithelium ex vivo. In freshly isolated gallbladder epithelial cells, preproET-1, -2, and -3 mRNAs were detected by reverse transcription PCR and ET-1 isopeptide was identified by chromatography. The cells also displayed ET receptor mRNAs and high-affinity binding sites for ET-1, mostly of the ETB type. Electrogenic anion secretion across intact gallbladder mucosa was stimulated by forskolin, secretin, and exogenous ATP, as assessed by short-circuit current (Isc) increases in Ussing-type chambers. ET-1 inhibited forskolin- and secretin-induced changes in Isc, without affecting baseline Isc or ATP-induced changes. Accordingly, ET-1 significantly reduced the accumulation of intracellular cAMP elicited by forskolin and secretin in the epithelial cells, and this effect was abolished by pertussis toxin. This is the first evidence that ET-1 is synthesized and inhibits, via a Gi protein-coupled receptor, cAMP-dependent anion secretion in human gallbladder epithelium, indicating a role in the control of bile secretion by an autocrine/paracrine mechanism.[1]

References

  1. Endothelin-1 is synthesized and inhibits cyclic adenosine monophosphate- dependent anion secretion by an autocrine/paracrine mechanism in gallbladder epithelial cells. Fouassier, L., Chinet, T., Robert, B., Carayon, A., Balladur, P., Mergey, M., Paul, A., Poupon, R., Capeau, J., Barbu, V., Housset, C. J. Clin. Invest. (1998) [Pubmed]
 
WikiGenes - Universities