The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Chronic dietary supplementation with L-arginine inhibits platelet aggregation and thromboxane A2 synthesis in hypercholesterolaemic rabbits in vivo.

OBJECTIVES: L-arginine exerts anti-atherosclerotic effects in hypercholesterolaemic rabbits via modulating endogenous NO production. We investigated whether L-arginine inhibits thromboxane formation in vivo and platelet aggregation ex vivo in this animal model. METHODS: The urinary excretion rates of 2,3-dinor-6-keto-PGF1 alpha (major urinary metabolite of PGI2) and 2,3-dinor-TXB2 (major urinary metabolite of thromboxane A2) were used as indicators of platelet-endothelial cell interactions in vivo. Rabbits were fed 1% cholesterol (Cholesterol group, N = 8), 1% cholesterol plus 2.25% L-arginine (Cholesterol + L-arginine, N = 8), or normal rabbit chow (Control, N = 4) for 12 weeks. Urine samples were collected in weekly intervals. At the end of the study period platelet aggregation ex vivo and endothelium-dependent and -independent vascular function of isolated aortic rings in vitro was assessed. RESULTS: Urinary 2,3-dinor-TXB2 excretion significantly increased in the cholesterol group (p < 0.05), and endogenous NO formation (measured as urinary nitrate excretion) decreased (p < 0.05). Both parameters were significantly correlated with each other (R = 0.48, p < 0.01). L-arginine partly restored urinary nitrate excretion and significantly reduced TXA2 production to values even below those in the control group (p < 0.001). Urinary 2,3-dinor-6-keto-PGF1 alpha excretion increased in early hypercholesterolaemia and returned to control values in the second half of the study period. The early increase in urinary 2,3-dinor-6-keto-PGF1 alpha excretion was attenuated by L-arginine. Platelet aggregation was significantly enhanced in cholesterol-fed rabbits and attenuated by dietary L-arginine. L-arginine also improved the impaired endothelium-dependent relaxations to ADP, and normalized the vasoconstrictor effects of 5-HT in isolated aortic rings. CONCLUSIONS: Cholesterol-feeding enhances platelet aggregation and TXA2 formation, and stimulates platelet-endothelial cell interaction in rabbits. These effects are probably due to impaired NO elaboration, as indicated by decreased urinary nitrate excretion. Chronic dietary supplementation with L-arginine elevates systemic NO elaboration and significantly increases the PGI2/TXA2 ratio. It thus beneficially influences the homeostasis between vasodilator and vasoconstrictor prostanoids in vivo.[1]

References

  1. Chronic dietary supplementation with L-arginine inhibits platelet aggregation and thromboxane A2 synthesis in hypercholesterolaemic rabbits in vivo. Bode-Böger, S.M., Böger, R.H., Kienke, S., Böhme, M., Phivthong-ngam, L., Tsikas, D., Frölich, J.C. Cardiovasc. Res. (1998) [Pubmed]
 
WikiGenes - Universities