The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Development of in vitro peptide substrates for human rhinovirus-14 2A protease.

Purified 2A protease from human rhinovirus serotype-14 (HRV14) was unable to efficiently cleave a 16-mer peptide representing its authentic cis-cleavage site on the viral polyprotein, implying that in vivo cis cleavage by this enzyme might be very different from its in vitro trans activity. Presence of a serine at position P2 and a leucine at P2' in the 16-mer peptide was found to be responsible for the low peptide cleavage efficiency. To search for an efficient peptide substrate for HRV14 2A, small peptides derived from other rhinovirus 2A protease cleavage sites were synthesized and tested. These results suggested that the N-terminal 8 amino acids were sufficient for HRV14 2A cleavage to occur, although the P1' and P2' residue identities were important to the cleavage of peptides with amino acids occupying both sides of the scissile bond. On the basis of the 2A substrate requirements, a sensitive fluorometric assay for the viral 2A proteases was developed using peptides with anthranilide and 3-nitrotyrosine as the resonance energy transfer donor/quencher pair. Our data indicated that these fluorescent peptide substrates were suitable for 2A protease characterization and inhibitor evaluation.[1]

References

  1. Development of in vitro peptide substrates for human rhinovirus-14 2A protease. Wang, Q.M., Johnson, R.B., Sommergruber, W., Shepherd, T.A. Arch. Biochem. Biophys. (1998) [Pubmed]
 
WikiGenes - Universities